Measles virus N protein inhibits host translation by binding to eIF3-p40.
نویسندگان
چکیده
The nonsegmented, negative-sense RNA genome of measles virus (MV) is encapsidated by the virus-encoded nucleocapsid protein (N). In this study, we searched for N-binding cellular proteins by using MV-N as bait and screening the human T-cell cDNA library by yeast two-hybrid assay and isolated the p40 subunit of eukaryotic initiation factor 3 (eIF3-p40) as a binding partner. The interaction between MV-N and eIF3-p40 in mammalian cells was confirmed by coimmunoprecipitation. Since eIF3-p40 is a translation initiation factor, we analyzed the potential inhibitory effect of MV-N on protein synthesis. Glutathione S-transferase (GST)-fused MV-N (GST-N) inhibited translation of reporter mRNAs in rabbit reticulocyte lysate translation system in a dose-dependent manner. Encephalomyocarditis virus internal ribosomal entry site-mediated translation, which requires canonical initiation factors to initiate translation, was also inhibited by GST-N. In contrast, a unique form of translation mediated by the intergenic region of Plautia stali intestine virus, which can assemble 80S ribosomes in the absence of canonical initiation factors, was scarcely affected by GST-N. In vivo expression of MV-N induced by the Cre/loxP switching system inhibited the synthesis of a transfected reporter protein, as well as overall protein synthesis. These results suggest that MV-N targets eIF3-p40 and may be involved in inhibiting MV-induced host translation.
منابع مشابه
Control of translation reinitiation on the cauliflower mosaic virus (CaMV) polycistronic RNA.
Translation of the polycistronic 35S RNA of CaMV (cauliflower mosaic virus) occurs via a reinitiation mechanism, which requires TAV (transactivator/viroplasmin). To allow translation reinitiation of the major open reading frames on the polycistronic RNA, TAV interacts with the host translational machinery via eIF3 (eukaryotic initiation factor 3) and the 60S ribosome. Accumulation of TAV and eI...
متن کاملStructure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly.
The mammalian translation initiation factor 3 (eIF3), is a multiprotein complex of approximately 600 kDa that binds to the 40 S ribosome and promotes the binding of methionyl-tRNAi and mRNA. cDNAs encoding 5 of the 10 subunits, namely eIF3-p170, -p116, -p110, -p48, and -p36, have been isolated previously. Here we report the cloning and characterization of human cDNAs encoding the major RNA bind...
متن کاملEucaryotic initiation factor 4B controls eIF3-mediated ribosomal entry of viral reinitiation factor.
The cauliflower mosaic virus reinitiation factor TAV interacts with host translation initiation factor 3 (eIF3) and the 60S ribosomal subunit to accomplish translation of polycistronic mRNAs. Interaction between TAV and eIF3g is critical for the reinitiation process. Here, we show that eIF4B can preclude formation of the TAV/eIF3 complex via competition with TAV for eIF3g binding; indeed, the e...
متن کاملConstruction of a Minigenome Rescue System for Measles Virus, AIK-c Strain
Background:In the recent decade, the reverse genetics method has been broadly used for rescue of negative-stranded RNA viruses from cDNA or viral minigenomes. This technique has been applied to study different steps in virus replication and virus-host interactions. Reverse genetics could also be implemented for design of new vaccines. The T7 RNA polymerase activity as well as virus (nucleocapsi...
متن کاملProteomics of herpes simplex virus infected cell protein 27: association with translation initiation factors.
The herpes simplex virus (HSV) immediate early ICP27 protein plays an essential role in stimulating viral early and late gene expression. ICP27 appears to be multifunctional in that it has been reported to stimulate viral late gene transcription, polyadenylation site usage, and RNA export. We report here on proteomic studies involving immunoprecipitation of ICP27 and mass spectrometric identifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 81 21 شماره
صفحات -
تاریخ انتشار 2007